技術文章
Technical articles柔性可拉伸電子器件具有可彎曲、可拉伸和可扭曲的優異力學特性,其在生物醫學工程、機器人技術、人機界面等各個領域的應用重要性日益凸顯。常見制備方法一方面是開發本征可拉伸的導電材料,例如摻雜導電納米材料的軟彈性體、導電聚合物和水凝膠等。但是,這些新型材料通常電導率較低、機電穩定性能較差和易對實際應用中的電信號造成干擾。另一方面則是通過構建如平面蛇形等幾何結構來提升傳統導電材料(包括金屬等)在力學服役下的最大可拉伸應變。雖然以上兩種(結合)方法都已有大量報道,然而大部分的可拉伸電子受...
由于其特異的宏微觀基元拓撲構型,力學超材料在剛度、韌性、減隔振和熱膨脹等性能方面顯著優于傳統均質材料,受到了航空航天、生物醫學、電子電路和土木工程等領域的廣泛關注。生物體經過長期進化形成的各類器官,與超材料的概念相契合,即通過多層級微結構實現超常物理力學特性,同時生物器官的微結構基元還呈現出梯度漸變、長程無序等特征。目前,針對力學超材料發展的拓撲優化方法和機器學習設計方法,主要面向周期性結構,對于仿生梯度超材料的逆向設計和優化,缺乏高效率、高保真的計算分析方法。圖1深度神經多...
在生物醫學研究中,對生物顆粒(如細胞和生物組織)的操作,特別是捕獲和運輸,是各種生物應用的基礎。許多工具和驅動系統被設計用來提高操作的準確性和效率。磁驅動機器人具有精確操縱粒子或生物組織的能力,在生物醫學、生物工程和生物物理學領域具有重要的潛力。然而,具有預定形狀的剛性機器人的變形能力是有限的,這限制了其在狹小的空間的運動。近日,北京航空航天大學機械工程學院仿生與微納研究所馮林副教授等研發了一種可變小型機器人,該機器人是利用具有磁性和流體性質的鐵磁流體這一新型材料所研制的。該...
智能機器人的快速發展必將給人類的日常生活帶來一場革命。隨著他們與復雜操作環境融合的要求越來越高,柔性和可變形機器人的發展變得至關重要。然而,現有的機器人通常需要剛性的電機泵來提供能量,并限制了其對環境的適應性。全軟體機器人由于其*的適應性和友好的人機界面,已經引起了人們的極大關注。已經報道了具有不同類型運動的水生軟體機器人,如爬行、跳躍和游泳。然而,所報道的三維運動集中在單一相位上,要么是液體,要么是空氣。沒有報道與液體-空氣界面有關。由于不平衡的機械環境,要在液氣兩相界面實...
3D打印作為一種革命性的制造技術,已經廣泛應用于各種工業領域,如航空航天、生物醫學、消費用品等。其中,數字光處理(DLP)型光固化3D打印技術由于打印精度高、速度快而備受人們的關注。然而,目前大部分光固化3D打印樹脂來源于.不.可.再.生的化石能源,且廢棄的3D打印制件不可回收利用,易造成嚴重的資源浪費及環境污染。部分研究者將動態共價鍵引入到光固化3D打印樹脂中,廢棄模型可以再次熱壓成型。但是,熱壓模型十分簡單粗糙,且再加工材料老化嚴重,性能明顯下降,故屬于低價值回收。將光固...
自然界中的生物體為了能夠很好地適應外界環境,在不斷進化中擁有了自己獨.特的能力。早在宋代就有詩詞“出淤泥而不染,濯清漣而不妖”,這其中描述的是“荷葉效應”——荷葉表面由于具有特殊排列的微納米結構而表現出對水的排斥,這種現象被稱為超疏水現象。由于具有超疏水結構的表面在自清潔、抗腐蝕、流動減阻、油/水分離、微反應器和液滴操縱等領域具有較強的應用潛力。因此,通過“師法自然”的方法來設計并且制備出具有超疏水結構的仿生表面發展迅速??蒲泄ぷ髡邆円呀浹芯块_發了許多制取具有超疏水性質的表面...
在生物醫學研究中,對生物顆粒(如細胞和生物組織)的操作,特別是捕獲和運輸,是各種生物應用的基礎。許多工具和驅動系統被設計用來提高操作的準確性和效率。磁驅動機器人具有精確操縱粒子或生物組織的能力,在生物醫學、生物工程和生物物理學領域具有重要的潛力。然而,具有預定形狀的剛性機器人的變形能力是有限的,這限制了其在狹小的空間的運動。近日,北京航空航天大學機械工程學院仿生與微納研究所馮林副教授等研發了一種可變小型機器人,該機器人是利用具有磁性和流體性質的鐵磁流體這一新型材料所研制的。該...
隨著柔性電子領域的快速發展和物聯網技術的普及,能夠用來監測人類生理指標(如心跳、脈搏、運動周期、血壓等)和機械運行狀態(如主軸跳動、機器人運動狀態感知等)信號的可穿戴電子器件逐漸應用到社會生活中。可穿戴電子器件的共形設計和制造使其在電子皮膚、柔性傳感和人工智能中具有潛在的應用前景。當前,大多數電子器件是利用光刻、壓印技術和電子束在硅表面進行制備。然而由于缺乏彎曲表面的加工工藝,要制備與復雜曲線表面(例如人體關節)共形的電子器件尤為困難。面投影微立體光刻3D打印技術(PμSL)...